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Abstract. We show that Simion’s type B associahedron is combinatorially equivalent
to a pulling triangulation of a type B root polytope called the Legendre polytope.
Furthermore, we show that every pulling triangulation of the Legendre polytope yields
a flag complex. Our triangulation refines a decomposition of the Legendre polytope
given by Cho. We extend Cho’s cyclic group action to the triangulation in such a way
that it corresponds to rotating centrally symmetric triangulations of a regular (2n + 2)-
gon.

Résumé. Nous montrons que l’associaèdre du type B de Simion est combinatorielle-
ment èquivalent à une triangulation obtenue en tirant les sommets d’un polytope des
racines du type B, appelé le polytope de Legendre. De plus, nous montrons que
toute triangulation obtenue en tirant les sommets de ce polytope est un complex de
drapeau. Notre triangulation raffine une décomposition du polytope de Legendre
donné par Cho. Nous éteignons l’action du groupe cyclique de Cho à la triangulation
tel qu’elle correspond à la rotation des triangulations centrallement symétriques d’un
(2n + 2)-gone régulier.
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1 Introduction

Root polytopes arising as convex hulls of roots in a root system have become the subject
of intensive interest in recent years [1, 10, 13, 16, 21, 22]. Another important area where
geometry meets combinatorics is the study of noncrossing partitions, associahedra and
their generalizations. In this context Simion [24] constructed a type B associahedron
whose facets correspond to centrally symmetric triangulations of a regular (2n + 2)-gon.
Burgiel and Reiner [5] described Simion’s construction as providing “the first motivating
example for an equivariant generalization of fiber polytopes, that is, polytopal subdivi-
sions which are invariant under symmetry groups”. It was recently observed by Cori
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and Hetyei [11] that the face numbers in this type B associahedron are the same as the
face numbers in any pulling triangulation of the boundary of a type B root polytope,
called the Legendre polytope in [16].

In this presentation we explain that the equality of these face numbers is not a mere
coincidence: the type B associahedron is combinatorially equivalent to a pulling trian-
gulation of the Legendre polytope Pn. The convex hull of the positive roots among the
vertices of the Legendre polytope and of the origin is a type A root polytope P+

n . Cho [9]
has shown that the Legendre polytope Pn may be decomposed into copies of P+

n that
meet only on their boundaries and that there is a Zn+1-action on this decomposition.
Our triangulation representing the type B associahedron as a triangulation of the Leg-
endre polytope refines Cho’s decomposition in such a way that extends the Zn+1-action
to the triangulation. The effect of this Zn+1-action on the centrally symmetric triangula-
tions of the (2n + 2)-gon is rotation.

2 Preliminaries

2.1 Simion’s type B associahedron

Simion [24] introduced a simplicial complex denoted by ΓB
n on n(n + 1) vertices as fol-

lows. Consider a centrally symmetric convex (2n + 2)-gon, and label its vertices in the
clockwise order with 1, 2, . . . , n, n + 1, 1, 2, . . . , n, n + 1. The vertices of ΓB

n are the
B-diagonals, which are one of the two following kinds: diagonals joining antipodal pairs
of points, and antipodal pairs of noncrossing diagonals. The diagonals joining antipodal
points are all pairs of the form {i, i} satisfying 1 ≤ i ≤ n + 1, and they are called di-
ameters. The B-diagonals that are antipodal pairs of noncrossing diagonals are either of
the form {{i, j}, {i, j}} satisfying 1 ≤ i < i + 1 < j ≤ n + 1 or of the form {{i, j}, {i, j}}
satisfying 1 ≤ j < i ≤ n + 1.

The simplicial complex ΓB
n is the family of sets of pairwise noncrossing B-diagonals.

Simion showed the simplicial complex ΓB
n is the boundary complex of an n-dimensional

convex polytope. The dual of this polytope is also known as the Bott–Taubes polytope [4]
and the cyclohedron [20]. Associahedra are usually defined as simple polytopes. How-
ever, Simion followed Perles’ convention by calling this simplicial polytope the associa-
hedron. Since the only associahedron we will consider is the one constructed by Simion,
we prefer to use her nomenclature.

Simion also computed the face numbers and h-vector. These turn out to be identical
with the face numbers and h-vector of any pulling triangulation of the Legendre poly-
tope. We will discuss this polytope in the next subsection. We end with a fact that is
implicit in the work of Simion [24, Section 3.3].
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Lemma 2.1 (Simion). Each facet ΓB
n of Simion’s type B associahedron contains exactly one B-

diagonal of the form {i, i} connecting an antipodal pair of points.

2.2 The Legendre polytope or “full” type A root polytope

Consider an (n + 1)-dimensional Euclidean space with orthonormal basis {e1, . . . , en+1}.
The convex hull of the vertices±2e1, . . . , ±2en+1 is an (n+ 1)-dimensional cross-polytope.
The intersection of this cross-polytope with the hyperplane x1 + x2 + · · ·+ xn+1 = 0 is an
n-dimensional centrally symmetric polytope Pn first studied by Cho [9]. It is called the
Legendre polytope in the work of Hetyei [16], since the polynomial ∑n

j=0 f j−1 · ((x− 1)/2)j

is the nth Legendre polynomial, where fi is the number of i-dimensional faces in any
pulling triangulation of the boundary of Pn. See Lemma 2.7 below. Furthermore, it
is called the “full” type A root polytope in the work of Ardila–Beck–Hoşten–Pfeifle–
Seashore [1]. It has n(n + 1) vertices consisting of all points of the form ei − ej where
i 6= j.

We use the shorthand notation (i, j) for the vertex ej− ei of the Legendre polytope Pn.
We may think of these vertices as the set of all directed nonloop edges on the vertex set
{1, 2, . . . , n + 1}. A subset of these edges is contained in some face of Pn exactly when
there is no i ∈ {1, 2, . . . , n + 1} that is both the head and the tail of a directed edge.
Equivalently, the faces are described as follows.

Lemma 2.2. The faces of the Legendre polytope Pn are of the form conv(I × J) = conv({(i, j) :
i ∈ I, j ∈ J}) where I and J are two non-empty disjoint subsets of the set {1, 2, . . . , n + 1}. The
dimension of a face is given by |I|+ |J| − 2. A face is a facet if and only if the union of I and J
is the set {1, 2, . . . , n + 1}.
Especially, when the two sets I and J both have cardinality two, the associated face is a
square. Furthermore, the other two-dimensional faces are equilateral triangles.

Affine independent subsets of vertices of faces of the Legendre polytope are easy to
describe. A set S = {(i1, j1), (i2, j2), . . . , (ik, jk)} is a (k − 1)-dimensional simplex if and
only if, disregarding the orientation of the directed edges, the set S contains no cycle,
that is, it is a forest [16, Lemma 2.4].

The Legendre polytope Pn contains the polytope P+
n , defined as the convex hull of

the origin and the set of points ei − ej, where i < j. The polytope P+
n was first studied by

Gelfand, Graev and Postnikov [13] and later by Postnikov [23]. Some of the results on
P+

n may be easily generalized to Pn.

2.3 Pulling triangulations

The notion of pulling triangulations is originally due to Hudson [17, Lemma 1.4]. For
more modern formulations, see [25, Lemma 1.1] and [2, End of Section 2]. We refer
to [16, Section 2.3] for the version presented here.
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For a polytopal complex P and a vertex v of P , let P − v be the complex consisting
of all faces of P not containing the vertex v. Also for a facet F let P(F) be the complex
of all faces of P contained in F.

Definition 2.3 (Hudson). Let P be a polytopal complex and let < be a linear order on the
set V of its vertices. The pulling triangulation 4(P) with respect to < is defined recursively as
follows. We set 4(P) = P if P consists of a single vertex. Otherwise let v be the least element
of V with respect to < and set

4(P) = 4(P − v) ∪
⋃
F
{conv({v} ∪ G) : G ∈ 4(P(F))} ,

where the union runs over the facets F not containing v of the maximal faces of P which contain v.
The triangulations 4(P − v) and 4(P(F)) are with respect to the order < restricted to their
respective vertex sets.

Theorem 2.4 (Hudson). The pulling triangulation 4(P) is a triangulation of the polytopal
complex P without introducing any new vertices.

In particular, any pulling triangulation of the boundary of Pn is compressed as de-
fined by Stanley [25], and has the same face numbers [16, Corollary 4.11]. This important
fact and the analogous statement for P+

n is a direct consequence of the following two fun-
damental results [14, 15, 25].

Proposition 2.5 (Stanley). Suppose that one of the vertices of a polytope P is the origin and that
the matrix whose rows are the coordinates of the vertices of P is totally unimodular. Let < be any
ordering on the vertex set of P such that the origin is the least vertex with respect to <. Then the
pulling order < is compressed, that is, all of the facets in the induced triangulation have the same
relative volume.

Theorem 2.6 (Heller). The incidence matrix of a directed graph is totally unimodular.

2.4 Face vectors of pulling triangulations of the Legendre polytope

Among all triangulations of the boundary of the Legendre polytope Pn obtained by
pulling the vertices, counting faces is most easily performed for the lexicographic trian-
gulation in which we pull (i, j) before (i′, j′) exactly when i < i′ or when i = i′ and
j < j′. Counting faces in this triangulation amounts to counting lattice paths; see [16,
Lemma 5.1] and [1, Proposition 17]. From this we obtain the following expression for
the face numbers [16, Theorem 5.2].

Lemma 2.7 (Hetyei). For any pulling triangulation of the boundary of Pn, the number f j−1 of
(j− 1)-dimensional faces is

f j−1 =

(
n + j

j

)(
n
j

)
for 0 ≤ j ≤ n. (2.1)
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3 The flag property

Recall that a simplicial complex is a flag complex if every minimal nonface has two ele-
ments. The main result of this section is the following.

Theorem 3.1. Every pulling triangulation of the boundary of the Legendre polytope Pn is a flag
simplicial complex.

A key ingredient for proving this theorem and Theorem 6.1 is the following observa-
tion.

Lemma 3.2. Let {x1, x2, y1, y2} be a four element subset of the set {1, 2, . . . , n + 1}. Then
the set {x1, x2} × {y1, y2} = {(x1, y1), (x1, y2), (x2, y2), (x2, y1)} is the vertex set of a square
face of the Legendre polytope Pn, and the sets {(x1, y1), (x2, y2)} and {(x1, y2), (x2, y1)} are the
diagonals of this square. For any pulling triangulation the diagonal containing the vertex that
was pulled first is an edge of the triangulation and the other diagonal is not an edge.

Since the Cartesian product of an m-dimensional simplex and an n-dimensional sim-
plex is a face of the Legendre polytope of dimension m + n + 1, we obtain the following
corollary.

Corollary 3.3. Every pulling triangulation of the Cartesian product of two simplices is a flag
complex.

4 The arc representation of ΓB
n

Consider a regular (2n + 2)-gon whose vertices are labeled 1, 2, . . . , n + 1, 1, 2, . . . , n + 1
in the clockwise order. Identify each vertex i with n + 1 + i for i = 1, 2, . . . , n + 1. Sub-
ject to this identification, each B-diagonal, may be represented as an unordered pair of
diagonals of the form {{u, v}, {u + n + 1, v + n + 1}} for some 2-element subset {u, v}
of {1, 2, . . . , 2n + 2}, where addition is modulo 2n + 2. For B-diagonals {k, k} joining
antipodal points, the unordered pair {{k, k + n + 1}, {k + n + 1, k + 2n + 2}} contains
two copies of the same two-element set.

For any two points x and y on the circle R/(2n + 2)Z which are not antipodal, let
[x, y] denote the shortest arc from x to y.

Definition 4.1. We define the arc-representation on the vertices of ΓB
n as follows. Subject to

the above identifications, represent the B-diagonal {{u, v}, {u + n + 1, v + n + 1}} with the
centrally symmetric pair of arcs {[u, v− 1], [u + n + 1, v + n]} on the circle R/(2n + 2)Z.

Note that for B-diagonals of the form {{k, n + 1 + k}, {k, n + 1 + k}} corresponding
to antipodal pairs of points, the union of the arcs [k, k + n] and [k + n + 1, k− 1] is not
the full circle.

See Figure 1 for an example where n = 7 with the B-diagonal {{2, 5}, {2, 5}}.
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Figure 1: The arc representation of the B-diagonal consisting of the two diagonals
{2, 5} and {2, 5} = {10, 13} is the two arcs [2, 4] and [2, 4] = [10, 12]. By considering
the arcs modulo n + 1 = 8 (see the second circle) we obtain that this B-diagonal is
represented by the arrow (4, 2).

Lemma 4.2. The arc-representation of the vertices of ΓB
n is one-to-one: distinct B-diagonals are

mapped to distinct centrally symmetric pairs of arcs.

The following theorem plays an important role in connecting the type B associahe-
dron with the Legendre polytope.

Theorem 4.3. The B-diagonal represented by the pair of arcs {[u1, v1 − 1], [u1 + n + 1, v1 +
n]} and the B-diagonal represented by the pair of arcs {[u2, v2 − 1], [u2 + n + 1, v2 + n]} are
noncrossing if and only if for either arc I ∈ {[u1, v1− 1], [u1 + n + 1, v1 + n]} and for either arc
J ∈ {[u2, v2 − 1], [u2 + n + 1, v2 + n]}, the arcs I and J are either nested or disjoint.

Corollary 4.4. The B-diagonal represented by the pair of arcs {[u1, v1 − 1], [u1 + n + 1, v1 +
n]} and the B-diagonal represented by the pair of arcs {[u2, v2 − 1], [u2 + n + 1, v2 + n]} are
noncrossing if and only the set [u1, v1− 1]∪ [u1 + n+ 1, v1 + n] and the set [u2, v2− 1]∪ [u2 +
n + 1, v2 + n] are nested or disjoint.

5 Embedding ΓB
n as a family of simplices on ∂Pn

We begin by defining a bijection between the vertex set of ΓB
n and that of Pn. Recall that

we use the shorthand notation (i, j) for the vertex ej − ei of Pn. We refer to (i, j) as the
arrow from i to j. Using the term “arrow” as opposed to “directed edge” will eliminate
the confusion that ej − ei is a vertex of Pn.

Definition 5.1. Let {[i, j], [i, j]} be the arc representation of a B-diagonal in ΓB
n , where 1 ≤ i ≤

n + 1 and i < j. Define the arrow representation of this B-diagonal in Pn to be the arrow (j, i).
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In other words, the arrow encodes the complement of the image of the arcs in the
circle R/(n + 1)Z. We refer to the second circle in Figure 1 for the continuation of the
example of the B-diagonal {{2, 5}, {2, 5}}.

Definition 5.2. Define the map π : R/(2n + 2)Z −→ R/(n + 1)Z to be the modulo n + 1
map. Furthermore, identify the circle R/(n + 1)Z with the half-open interval (0, n + 1]. Thus
the map π sends each x ∈ (0, n + 1] to x and each x ∈ (n + 1, 2n + 2] to x− n− 1.

Although the map π depends on n, we suppress this dependency in our notation.
Also observe that the map π is a two-to-one mapping: for each y ∈ R/(n + 1)Z we have
|π−1(y)| = 2.

Remark 5.3. For any pair of arcs {[u, v− 1], [u + n + 1, v + n]} there is a unique way to
select u to be an element of the set {1, 2, . . . , n+ 1}, that is, π(u) = u. We may distinguish
two cases depending upon whether the arc [u, v− 1] is a subset of the arc [u, n + 1] or
not.

(i) If [u, v− 1] ⊆ [u, n + 1] then visualize the set π([u, v− 1]) = π([u + n + 1, v + n])
as the subinterval [u, v− 1] of (0, n + 1]. The direction of both arcs [u, v− 1] and
[u + n + 1, v + n] corresponds to parsing the interval [u, v− 1] in increasing order.
Adding the associated backward arrow (v− 1, u) closes a directed cycle with this
directed interval.

0 1 2 3 4 5 6 7 8

As an example, when n = 7 then the B-diagonal {{2, 5}, {2, 5}} is represented by
the backward arrow (4, 2) as drawn above on the interval (0, 8].

(ii) If the arc [u, v− 1] is not contained in the arc [u, n + 1] then n + 1 < v− 1 < u +
n + 1. The integer π(v− 1) = v− 1− (n + 1) is congruent to v− 1 modulo (n + 1)
and satisfies 1 ≤ π(v − 1) < u. The image of the arc [u, v − 1] under π, that is,
π([u, v− 1]) = π([u + n + 1, v + n]) is then the subset (0, π(v)− 1] ∪ [u, n + 1] of
the interval (0, n + 1]. We may consider (0, π(v)− 1] ∪ [u, n + 1] as a “wraparound
interval” modulo n+ 1 from u to π(v− 1). The direction of both pieces corresponds
to listing the elements of this “wraparound interval” in increasing order modulo
n + 1. Adding the associated forward arrow (π(v − 1), u) closes a directed cycle
with the directed wraparound interval.

0 1 2 3 4 5 6 7 8



8 Ehrenborg, Hetyei and Readdy

For instance, when n = 7 the B-diagonal {{4, 6}, {4, 6}} yields the forward arrow
(3, 6).

Proposition 5.4. The B-diagonal represented by the arrow (π(v1 − 1), π(u1)) and the B-
diagonal represented by the arrow (π(v2 − 1), π(u2)) are noncrossing if and only if the images
π([u1, v1 − 1]) and π([u2, v2 − 1]) are disjoint or contain each other.

Proposition 5.5. Suppose a pair of B-diagonals is represented by a pair of arrows as defined in
Definition 5.1. These B-diagonals cross if and only if one of the following conditions is satisfied:

(1) Both arrows are backward and they cross.
(2) Both arrows are forward and they do not nest.
(3) One arrow is forward, the other one is backward, and the backward arrow nests or crosses the

forward arrow.
(4) The head of one arrow is the tail of the other arrow.

Corollary 5.6. Noncrossing sets of B-diagonals are represented by subsets of vertices contained
in a facet of the Legendre polytope Pn.

6 The type B associahedron represented as a pulling trian-
gulation

Theorem 6.1. Let < be any linear order on the vertex set of Pn subject to the following conditions:

1. (x1, y1) < (x2, y2) whenever x1 − y1 > 0 > x2 − y2.
2. On the subset of vertices (x, y) satisfying x < y, we have (x1, y1) < (x2, y2) whenever the

interval [x1, y1] = {x1, x1 + 1, . . . , y1} is contained in the interval [x2, y2].
3. On the subset of vertices (x, y) satisfying x > y, we have (x1, y1) < (x2, y2) whenever the

interval [y1, x1] is contained in the interval [y2, x2].

Then the arc representation of ΓB
n given in Definition 5.1 is a pulling triangulation of the boundary

of the Legendre polytope Pn with respect to <.

The main idea of the proof is the following. Recall that ΓB
n is a flag complex and

its minimal nonfaces are the pairs of crossing B-diagonals. By Theorem 3.1 the pulling
triangulation we defined is also a flag complex. It suffices to show that the minimal non-
faces are in bijection. Equivalently, for any pair of arrows {(x1, y1), (x2, y2)} that form an
edge in the pulling triangulation of Pn, these arrows correspond to a pair of noncrossing
B-diagonals in ΓB

n . By Proposition 5.5 this amounts to showing the following: backward
arrows cannot cross, forward arrows must nest, and for a pair of arrows of opposite
direction the backward arrow cannot cross or nest the forward arrow. The rest of the
proof is an easy verification of these statements for the six possible relative positions of
a pair of arrows with distinct endpoints.

As a corollary we obtain Simion’s polytopal result.
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Corollary 6.2 (Simion). The Simion type B associahedron ΓB
n is the boundary complex of a

simplicial polytope.

Since the associahedron of type A is the link of a B-diagonal of the form {i, i}, we
obtain the following classical result; see the work of Haiman, Lee [18] and Stasheff. For
a brief history, see the introduction of [7].

Corollary 6.3. The associahedron is the boundary complex of a simplicial polytope.

We end this section by describing the structure of all facets of the Simion’s type B
associahedron in terms of arrows.

Theorem 6.4. A set of arrows S = {(x1, y1), . . . , (xn, yn)} represents a facet of Simion’s type B
associahedron ΓB

n if and only if the following conditions are satisfied:

1. There is exactly one integer k satisfying 1 ≤ k ≤ n + 1 such that (k− 1, k) (or (n + 1, 1)
if k = 1) belongs the set S. We call this k the type of the facet.

2. Backward arrows do not nest any forward arrow, in particular, they cannot nest (k− 1, k)
if k > 1.

3. If k = 1 then there is no forward arrow in the set S.
4. Forward arrows must nest. In particular, if k > 1 then for each each forward arrow

(x, y) ∈ S must satisfy x ≤ k− 1 and y ≥ k. (Forward arrows must nest (k− 1, k).)
5. No head of an arrow in the set S is also the tail of another arrow in S.
6. No two arrows cross.

7 Triangulating Cho’s decomposition

The type A root polytope P+
n is the convex hull of the origin and the set of points

{ei − ej : 1 ≤ i < j ≤ n + 1}. Cho [9] gave a decomposition of the Legendre polytope Pn
into n + 1 copies of P+

n as follows. The symmetric group Sn+1 acts on the Euclidean
space Rn+1 by permuting the coordinates, that is, the permutation σ ∈ Sn+1 sends the
basis vector ei into eσ(i). Hence the permutation σ acts on the Legendre polytope Pn by
sending each ei − ej into eσ(i) − eσ(j). Cho’s main result [9, Theorem 16] is the following
decomposition.

Theorem 7.1 (Cho). The Legendre polytope Pn has the decomposition

Pn =
n⋃

k=0

ζk(P+
n )

where ζ is the cycle (1, 2, . . . , n + 1). Furthermore, for 0 ≤ k < r ≤ n the polytopes ζk(P+
n ) and

ζr(P+
n ) have disjoint interiors.
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The following theorem implies that each copy ζk(P+
n ) of P+

n is the union of simplices
of the triangulation given in Definition 5.1, representing the boundary complex ΓB

n of
Simion’s type B associahedron.

Theorem 7.2. Every facet F of the arc representation of ΓB
n given in Definition 5.1 is contained

in ζk−1(P+
n ) where k is the unique arrow of the form (k − 1, k) in F or (n + 1, 1) if k = 1.

Equivalently, the facet F is contained in ζk(P+
n ) exactly when it represents a facet of ΓB

n that
contains the diagonal {k, k}.

8 Concluding Remarks

For complete proofs, we refer the reader to the full length version of this extended
abstract [12].

Simion observed algebraically that the number of k-dimensional faces of the type B
associahedron is given by the number of balanced Delannoy paths between (0, 0) and
(2n, 0) taking k up steps (1, 1), k down steps (1,−1), and n− k horizontal steps (2, 0).
We have found a combinatorial proof by providing a non-recursive bijection between the
faces of the type B associahedron and Delannoy paths [12, Section 8].

In a recent paper, Cellini and Marietti [8] used abelian ideals to produce a triangu-
lation for various root polytopes. In the case of type A, their construction yields once
again a lexicographic triangulation of each face. Restricting to the positive roots yields
Gelfand, Graev and Postnikov’s anti-standard tree bases for the type A positive root
polytope. Is there an ideal corresponding to the reverse lexicographic triangulation?

The h-vector of Simion’s type B associahedron may be computed from the f -vector
using elementary operations on binomial coefficients; see [24, Corollary 1].

Lemma 8.1 (Simion). The h-vector (h0, h1, . . . , hn) of Simion’s type B associahedron ΓB
n satisfies

hi =

(
n
i

)2

for 0 ≤ i ≤ n.

One of the referees pointed out the recent work of Ceballos, Padrol and Sarmiento, in
which they recover our pulling triangulation of the bounday of the Legendre polytope [6,
Theorem 8.5]. Much earlier Billera, Cushman and Sanders describe an explicit shelling
using lattice paths and recover the values hi as counting those lattice paths having i
corners [3, Section 3]. The fact that the number of such lattice paths is given by (n

i )
2 is a

classical result of MacMahon from 1915 [19, Vol. I, Article 89, pp. 119-120].
Finally, are there other interesting simplicial polytopes that can be better understood

as pulling triangulations of less complicated polytopes?
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